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Abstract. We present a safety validation approach for Sense and Avoid (SAA) 

algorithms aboard Unmanned Aerial Vehicles (UAVs). We build multi-agent 

simulations to provide a test arena for UAVs with various SAA algorithms, in 

order to explore potential conflict situations. The simulation is configured by a 

series of parameters, which define a huge input space. Evolutionary search is 

used to explore the input space and to guide the simulation towards challenging 

situations, thus accelerating the process of finding dangerous faults of SAA al-

gorithms and supporting the safety validation process. We applied our approach 

to the recently published Selective Velocity Obstacles (SVO) algorithm. In our 

first experiment, we used both random and evolutionary search to find mid-air 

collisions where UAVs have perfect sensing ability. We found evolutionary 

search can find some faults (here, interesting problems with SVO) that random 

search takes a long time to find. Our second experiment added sensor noise to 

the model. Random search found similar problems as it did in experiment one, 

but the evolutionary search found some interesting new problems. The two ex-

periments show that the proposed approach has potential for safety validation of 

SAA algorithms. 
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1 Introduction 

Amazon, the world's largest online retailer, announced its “Prime Air” plan in 

2013, where Unmanned Aerial Vehicles (UAVs) will be used to deliver goods to 

customers. However, this is only a fiction now: UAVs are not currently permitted to 

access civilian airspace in most countries due to safety considerations. One of the 

safety concerns is the UAV's inability to avoid mid-air collision with other aircraft. 

To alleviate this concern, UAVs must provide what is referred to as a Sense and 

Avoid (SAA) capability. In [1], SAA is defined as “the capability of a UAV to remain 

well clear from and avoid collisions with other airborne traffic. Sense and Avoid pro-

vides the functions of self-separation and collision avoidance to establish an analo-

gous to “see and avoid” required by manned aircraft”. 

As for collision avoidance, a wide variety of approaches have been proposed in the 

general field of robotics [2-6] that have the potential to be adapted for UAVs. The 



safety of these approaches, however, is by no means well understood. Considering the 

strict safety requirements in the aviation sector, a collision avoidance algorithm can-

not be accepted and deployed without rigorous safety validation.  

Validation is the process of determining whether a product (e.g. a piece of imple-

mented software or a system) has the desired properties; desired, that is, in hindsight, 

rather than with reference to a pre-defined specification. Validation is different from 

verification, which is often conducted at the end of each development stage to deter-

mine whether a product of that stage (e.g. specification, computer model, design, and 

implementation etc.) is consistent with an explicit specification (or reference model). 

It is entirely possible that a product passes verification but fails validation, for exam-

ple when the specification has not captured what the user actually wants or needs.  

By safety validation, we mean the process of determining whether a product will 

behave safely during operation in terms of protecting itself, the environment it inhab-

its, and humans. Safety validation is difficult, firstly because users (regulators, opera-

tors, bystanders) often cannot provide precise safety requirements for complex, novel 

systems. Secondly, the operational environment of the product may be too complex to 

predict the range of possible operational scenarios in advance, which makes it hard to 

fill in the missing requirements. 

For SAA algorithms, the conventional approaches for safety validation are simula-

tion and flight test. Due to the high cost of flight test, it can only be conducted for a 

very limited time and thus gives limited assurance, although it does have the great 

advantage of testing real aircraft behaviours. Simulation is more cost-effective and 

thus can cover a far larger part of the possible operational situations, albeit subject to 

limitations in the fidelity of the simulation.  

In this paper, we present a safety validation approach for SAA algorithms based on 

multi-agent simulation and evolutionary search. Arnold and Alexander previously 

presented an approach to testing autonomous robot control software [7], which they 

claimed to also have potential for validation. They randomly created a diverse range 

of situations and executed them in the Player/Stage robot simulator to test whether the 

robot behaved safely. The work presented in this paper is an advancement of [7], 

specifically in that we use evolutionary search to guide the simulation towards chal-

lenging situations. We believe that this has greater potential to reveal safety issues 

than randomized simulations. Moreover, we test our approach using a promising new 

collision avoidance algorithm (Selective Velocity Obstacles), rather than the quite 

simple algorithm (Smoothed Nearness Diagrams) tested in [7].  

The paper is organized as follows: in section 2 we identify the challenges for such 

a safety validation approach, in section 3 we explain our proposed approach, and in 

section 4 we describe experimental use of our approach to validate the safety of the 

Selective Velocity Obstacles approach. Section 5 summaries the paper and outlines 

our future plans.  



2 Challenges for an Automated Safety Validation Approach 

 Ideally, a safety validation approach would reveal all safety issues (dangerous 

faults) of the validated system (if there are any). It would do so efficiently, and would 

give confidence regarding the extent to which all the credible faults have been re-

vealed. In this paper we attack only a small piece of the puzzle – given a space of 

situations and a system under validation, how we can efficiently home in on hazard-

ous situations that we haven’t seen before? 

As stated in [7], to reveal as many faults as possible, a wide range of diverse test 

situations should be generated. It is important to favour situations that have a high 

likelihood of causing dangerous behaviours of the validated system; otherwise, it 

would be easy for an approach to spend most of its time in generating safe situations, 

which is computationally inefficient. In this paper, we use evolutionary search to 

generate test situations with a high collision risk. 

A second challenge is “situation coverage” – testing the maximum proportion of 

potentially dangerous situations that the system could ever encounter [7]. Here, we 

partially address this using an encounter model of possible situation types to generate 

a broad distribution of specific situations. 

A third challenge is simulation fidelity, in particular whether there are faults in the 

system that the simulation cannot reveal because they depend on details that are not 

modelled. In this paper, we explore this issue in a simple way – we run simulations 

with both infallible sensors and sensors subject to random noise, and look at how the 

results of the latter simulations are richer (in terms of the range of hazardous situa-

tions found). 

In section 5, we discuss briefly how we will further address these issues in our fu-

ture work. 

3 Proposed Method 

The proposed method is the integration of multi-agent simulation and evolutionary 

search. We build multi-agent simulations to provide a test arena for UAVs with vari-

ous SAA algorithms, in order to explore potential conflict situations. The simulation 

is configured by a series of parameters, which define a huge input space. Evolutionary 

search is used to explore the input space and to guide the simulation towards chal-

lenging situations, thus accelerating the process of finding faults and supporting the 

safety validation process.   

Multi-agent Simulation 

We use MASON (See http://cs.gmu.edu/~eclab/projects/mason/) as our multi-

agent simulation framework. In a typical multi-agent simulation, there are three basic 

elements: agents, environment, and their interactions. The agents in our simulation are 

UAVs with various kinds of SAA algorithms. They have attributes, such as maximum 

and minimum speed, maximum turning rate, etc., and they also have behaviours, such 

as sensing other UAVs and avoiding them. The environment in our simulation is sim-



plified as a 2-D rectangular horizontal flight area with length and width set according 

to the range of the “Traffic Advisory (TA)” and “Resolution Advisory (RA)” regions 

of the TCAS (traffic alert and collision avoidance system). Apart from UAVs, some 

other entities in the environment are waypoints for navigation, and the start point and 

destination of each UAV. The interactions between the UAVs are only via the sense 

and avoid algorithms. We have not modelled any explicit communication between 

UAVs. The interactions between UAVs and the environment include UAVs following 

waypoints and generating new waypoints for collision avoidance. 

To validate the safety of SAA algorithms, the simulation should simulate different 

encounters for the SAA algorithm to handle. We developed “encounter generators” 

that can generate three kinds of encounters, each involving two UAVs: (1) head on 

encounters, (2) crossing encounters, and (3) tail approach encounters. We refer to one 

of the UAVs as the “subject” UAV and the other as an intruder. Using any one of the 

encounter generators, the intruder's start point, velocity vector and destination can be 

decided on the premise that the subject UAV's start point, velocity vector and destina-

tion have been fixed. The three encounters are explained as follows: 

1. The head on encounter is where the subject UAV and the intruder approach each 

other in opposite directions, as illustrated in Fig. 1 (a). The intruder can approach 

the subject UAV from either the left side or the right side with a certain offset. 

2. The crossing encounter is where the subject UAV and the intruder approach each 

other at an encounter angle ranging from 0° (exclusive) to 180
0
 (exclusive) from 

either the left or the right side, as illustrated in Fig. 1 (b). If the encounter angle 

equals 180
0
, it is a head on encounter without offset. If the encounter angle equals 

0°, it is a tail approach encounter without offset, which will be discussed next. 

3. The tail approach encounter is where the intruder overtakes or is overtaken by the 

subject UAV flying on parallel tracks, as illustrated in Fig. 1 (c). The intruder can 

overtake or be overtaken by the subject UAV from the left side or the right side 

with a certain offset.  

V

Subject UAV
Left side

Right side

V’

Encounter angle

Intruder

V

Subject UAV

Left side

Right side

V’

Intruder

V’

V’

Offset

Offset

V V’ Intruder

Subject UAV

V’

V’

Left side

Right side

Offset

Offset

a b c

Fig. 1. (a) Head on; (b) Crossing; (c) Tail approach. 

Some global agents are utilized to monitor the simulation: a “proximity measurer” 

measures the nearest distance of each UAV to other UAVs in every simulation step 

and the most dangerous proximity of each UAV to others in a simulation run; an “ac-

cident detector” monitors the simulation and logs accidents and removes UAVs disa-

bled by a collision. These global monitoring agents play an important role in guiding 

the search (which will be described later) towards challenging situations.  

As stated above, the simulation is configured by a series of parameters, which can 

be divided into three categories:  



1. parameters for one or more encounters, e.g. the parameter to decide which encoun-

ter should be simulated in a simulation run, and the parameters used to generate 

that encounter;  

2. parameters for the subject UAV, e.g. the subject UAV’s destination, its maximum 

and minimum speed, maximum acceleration and turning rate; 

3. parameters for the intruders, e.g. the intruder’s (or intruders’) maximum and mini-

mum speed, maximum acceleration and turning rate. 

Evolutionary Search 

 The evolutionary search part of the approach is implemented by using ECJ (See 

http://cs.gmu.edu/~eclab/projects/ecj/), which is a Java-based evolutionary computa-

tion research system. We have experimented with Genetic Algorithms (GA).  

To use GA, first, the initial population is set up with n individuals, with each indi-

vidual’s genome representing the settings of the simulation parameters identified 

above. Then each individual of the population is evaluated by a simulation run and the 

fitness of that individual can be calculated. According to the fitness, the selection 

process will (re)sample n individuals from the population, and the selected individu-

als' genome will be “crossed-over" and mutated. After these genetic operations, the 

individuals will be used to form the next generation of the population, which will 

replace the old population. This process goes on until it runs out of time or the ideal 

individual(s) has been found.  

The fitness of an individual is calculated by applying a “fitness function” to it. De-

fining a good fitness function is a crucial task in GA work, as it will ultimately deter-

mine where the search moves towards. In our case, a good fitness function should 

favour those individuals that embody hazardous situations, while avoiding premature 

convergence (i.e. avoiding the population becoming very homogenous). Since the 

main concern of SAA is mid-air collision, we define a fitness function based on the 

nearest distance between pair of UAVs during each simulation run observed by our 

“proximity measurer”.  

Similarities to Existing Approaches 

It is noted that our approach shares commonalities with search-based software test-

ing where meta-heuristic search techniques are employed for automatic generation of 

test data [8]. Whilst none of the results from that work are directly comparable to 

what we have presented here, we have adapted some of the ideas for our work. In 

search-based software testing, test data are generated as the input of a piece of code 

(or software) while in this paper, we use evolutionary search to generate input data 

(e.g. configuration parameters) for multi-agent simulations. This is because, for SAA 

algorithms, safety cannot be analysed without consideration of other UAVs and the 

environment. 

Similar approaches have also been used in the ASHiCS (Automating the Search for 

Hazards in Complex Systems) project [9] and by Alam et al. in [10, 11] to conduct 

safety analysis of ATM (Air Traffic Management) systems. However, their main con-

cern is to identify the combination of airspace configurations and Air Traffic Control-



ler's actions that can result in a high collision risk. This is different from our work that 

is to identify safety issues of SAA algorithms. 

4 Experiments and Findings 

4.1 Case Study Introduction 

We confine the experiments to two UAV encounters, where the two UAVs run the 

same SAA algorithm, though it is possible for our approach to handle multiple UAVs 

with heterogeneous SAA algorithms. We have tested our proposed approach on the 

recently published Selective Velocity Obstacles (SVO) [4] algorithm for collision 

avoidance. We selected SVO because it improves the widely studied Velocity Obsta-

cles [3] approach to accommodate the common right-of-way rules of the air while 

providing collision avoidance capability. Full details of SVO are provided in [4]; 

below, we provide a brief summary.  

A velocity obstacle is the set of all velocity vectors of an agent (UAV) that will re-

sult in a collision with other agents (or obstacles) at some moment in time, assuming 

that the other agents maintain their current velocity vectors [3]. It follows that if the 

agent chooses a velocity vector outside its velocity obstacle, then a collision will not 

occur in a certain time horizon.  

SVO is designed for cooperative collision avoidance, where each UAV in an en-

counter cooperatively avoids each other while obeying the right-of-way rules. The 

rules are as follows [4, 12]: 

1. On a converging encounter, the one on the right has the right-of-way;  

2. On a head-on encounter, both aircraft should move to the right side; 

3. The one that is about to be overtaken has the right-of-way; 

4. Avoidance manoeuvres should not go over, under, or in front of other aircraft that 

have the right-of-way, except when it is clear. 

 

Here three types of encounters are defined: Converging, Head-on, and Overtaking 

as illustrated in Fig. 2. Note they are different from the encounters defined by our 

simulation as illustrated in Fig. 1, which we think will help in revealing faults. SVO 

defines a way to selectively avoid the other UAV(s) by defining three manoeuvre 

modes [4], which are  

1. Avoid, where the host UAV takes an manoeuvre to avoid collision with others; 

2. Maintain, where the host UAV keeps its current velocity vector; 

3. Restore, where the collision avoidance system gives back the control to the origi-

nal controller/pilot. 

It is noted that, for a UAV to use the SVO approach, the only information it needs 

about the others is their current positions, velocity vectors and shapes. It is assumed 



that each UAV has perfect sensing ability when fitted with ADS-B
1
 to enable the 

cooperative collision avoidance (comments on the capabilities of ADS-B are outside 

the scope of this paper). In the experiments, we added some dynamic constraints on 

the UAVs, which were converted from the performance data of Global Hawk given in 

[6], as shown in Table 1. For SVO, when in the “Avoid” mode, it is desirable for the 

host UAV to select a new velocity vector outside its velocity obstacle induced by 

others but still obey the right-of-way rules. However, considering the dynamic con-

straints, we assume that each UAV can only avoid others by turning right 2.5deg/s. 

This means that during a simulation run, the magnitude of each UAV’s velocity vec-

tor keeps constant and only the direction of the velocity vector will change. Another 

consideration for this is that we follow the policy given in [4] and set the other ma-

noeuvres, such as the “climb and descend” for non-cooperative situations and speed 

and direction change for conflict resolution
2
. Note that, between simulation runs, the 

velocity magnitude also varies.  

 

Fig. 2.    UAV encounter types, adapted from manned air traffic [13] 

Max speed                92.6m/s Min speed                     51.4m/s 

Normal speed           77.2m/s Max turning rate           2.5deg/s 

Table 1. UAV performance limits 

Collision avoidance manoeuvres in some typical encounters are shown in Fig. 3. In 

the figures in this paper, the subject UAV always starts from the middle of the left 

side. The points in the diagram were generated by the SVO algorithm to denote the 

waypoints the host UAV should navigate by – the bigger red points generated from 

                                                           
1 Abbreviation for Automatic Dependent Surveillance-Broadcast, a cooperative surveillance 

technology with which a UAV will send its real time information, such as position and ve-

locity, to its peers via a radio frequency. 
2 Conflict resolution resolves situations where the distance between two UAVs becomes or is 

forecasted to become less than the minimum desired separation distance. It happens before 

collision avoidance. 



Avoid” modes, the smaller orange points from “Maintain” modes, and the black hol-

low points from “Restore” modes. 

70deg

70deg

a b

c d

Fig. 3. (a) In a Head-on encounter, each UAV avoids the other; (b) In an Overtaking encounter, 

the front one has the right-of-way; (c) In a right Converging encounter, the intruder has the 

right-of-way; (d) In a left Converging encounter, the subject UAV has the right-of-way 

4.2 Experiment 1: perfect sensing ability 

Experiment 1 was conducted under the assumption that each UAV has perfect 

sensing ability – they know both their own and the other UAV’s real time position 

and velocity vector. 

Experiment 1.1  

We first used random search as pre-treatment to find some “obvious” mid-air colli-

sions. We conducted random search 3 times, with 250,000 uniformly distributed sam-

ple points (simulation runs) each time. Overall there were 9 mid-air collisions, all of 

which happened in crossing encounters. Examples and their parameter settings are 

shown in Table 2. 

From Table 2 one pattern can be found – the encounters are all left side crossing 

(according to Fig. 1) with encounter angles around 46
o
; and the subject UAV’s speed 

is very high (92.6 is the maximum speed for this kind of UAV) while the intruder’s 

speed is very low (51.4 is the minimum speed for this kind of UAV). 

When we scrutinize all these encounters, a typical situation is shown in Fig. 4. The 

situation is “Left Converging” according to Fig. 2, where the subject UAV has the 

right-of-way. The intruder made a right turn manoeuvre. But since the subject UAV 

was at high speed and the intruder was at low speed, the manoeuvre was not enough 

to avoid a collision. 



 

 Subject UAV speed Is right side Encounter angle Intruder speed 

Trial 1 92.00 NO 46.15 54.34 

Trial 2 90.70 NO 45.18 54.30 

…. …. …. …. 

Trial 3 89.86 NO 45.27 52.70 

…. …. …. …. 

92.60 NO 46.75 55.50 

Average 90.98  46.01 54.33 

Table 2.  Mid-air collisions and their parameter settings revealed in experiment 1.1 

45deg

 
Fig. 4.  A typical encounter found in experiment 1.1 

It is noted that of all the 3*250,000=750,000 random searched points, random 

search found only 9 “obvious” mid-air collisions. Either there are few obvious colli-

sion situations, or random search has difficulty finding more challenging situations. 

It was not clear whether or not the “obvious” situations found so far constitute all 

the possible situations that will result in a mid-air collision for the SVO algorithm. 

We explored this in experiments 1.2 and 1.3. 

Experiment 1.2  

Experiment 1.2 was intended to find new, subtler, situations that will result in mid-

air collisions other than those found in experiment 1.1 using random search. To this 

end, if we sampled a point that corresponded to the class of collision situations found 

in 1.1, it was discarded without ever being simulated. These points were identified 

based on them satisfying all of the following conditions:  

1. It is a left side crossing encounter; 

2. The subject UAV’s speed minus the intruder’s speed is more than 18m/s; 

3. The encounter angle is greater than 45
o
, but it is less than 51.2

o
. 

The numbers above were estimated from the numbers in the “Average” row of Ta-

ble 2 with some extra margin. Thus we excluded the “obvious” dangerous encounters 

already identified, ensuring that the search were only looking for “new” problems.  

We conducted random search 3 times, with 250,000 sample points each time. Of 

all the sampled points, we found no mid-air collision and thus nothing interesting. 



Experiment 1.3 

The purpose of experiment 1.3 was the same as experiment 1.2, but evolutionary 

search was used instead. The point discarding conditions were the same as those in 

experiment 1.2. Whenever a new individual was created that matched all of the condi-

tions, it was immediately awarded the worst possible fitness value (i.e. 0) without 

ever being simulated.  

In the experiment, since we only considered two UAV encounters, the objective 

was thus to minimize the average of the minimum distances
3
 of each UAV to the 

other (the minimum distances were actually equal). Formally, it was defined as: 

  

where  is the number of simulation steps;  is the distance to collision between 

the subject UAV and the intruder in the  simulation step; and  is the reverse.  

In this experiment, the fitness function was defined as: 

 

where the value of  is the fitness of each individual, and when  equals  

this fitness function reaches its maximum, 1, meaning there is a mid-air collision. 

In this experiment, we set the number of generations to be 500, each generation 

with 500 individuals. So the number of total sample points is the same as before. We 

made 3 trials. Each trial took less than 3 minutes to compute using an ordinary desk-

top, slightly longer than the previous random searches, which took about 2.5 minutes.  

From the log we can see a fast increase in average fitness in the beginning genera-

tions as illustrated by the blue curves in Fig. 5. It means over these generations, the 

average minimum distance between the two UAVs decreased quickly and the evolu-

tionary search was guiding the simulation towards more challenging situations. The 

figure also shows that the average fitness curves all reached a near-plateau before 100 

generations, but their values varied. The third trial got the greatest value.  

As shown by the orange curves in Fig. 5. (a) and (b), the first two trials did not find 

any mid-air collision, but the third trial found many (Fig. 5. (c)). Note that in Fig. 5. 

(c), the average fitness near-plateaus before the average number of accidents. This is 

because one accident only happens and is counted when the fitness of that individual 

is exactly 1 (i.e. the distance between the two UAVs is exactly 0).  

When we checked these mid-air collisions found in trial 3, we found that the ge-

nomes (parameter settings) were almost the same – the genomes that code for acci-

dent scenarios were almost clones of each other. This is because when the GA finds a 

good individual, it will have a high probability to focus on the individual and make 

some minute modifications to it. So GA has a strong tendency to converge. But if the 

initial genomes are not very good, the minute modifications are not enough to find 

some better individuals and an evolutionary search may fail to find the best individu-

als in a finite number of generations (“premature convergence” in GA terms), which 

                                                           
3 Here, the distance was scaled for simulation visualization purpose. Whenever a collision 

happened the distance was set to 0. 



was what happened in the first two trials. We tried to overcome this by using a much 

bigger initial population in experiment 2.3, see below. 

c
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Fig. 5. Average fitness and accidents of each generation in experiment 1.3 

(a) (b)

Fig. 6. Typical encounters found in experiment 1.3 

(a) (b)
     

Fig. 7. Collisions shown in Fig. 6 can be avoided with a slightly larger turning rate 

Two typical encounters that resulted in mid-air collisions are shown in Fig. 6. 

These encounters are not so interesting, as the initial positions of the two UAVs are 

too close. But even in such close initial positions conditions, if the UAV’s maximum 

turning rate is a bit greater than 2.5deg/s, say 3deg/s, all the collisions can be avoided, 

as shown in Fig. 7. 



Fig. 8 shows the average fitness of each generation using GA (data from trial 1) 

and random search (data from trial 1, 2, 3 of experiment 1.2). Since the fitness repre-

sents the nearest proximity between the two UAVs during a simulation run, we can 

conclude that the evolutionary search is more efficient in finding subtler challenging 

situations than random search. 

 
Fig. 8. Average fitness of GA and random searches 

So far, two rough patterns of encounters have been revealed that are likely to result 

in mid-air collisions. The two patterns are summarized as follows: 

1. Pattern 1 is left 45
o
 crossing encounters, where the intersection of the following 

conditions is true: 

─ It is a left side crossing encounter; 

─ The subject UAV’s speed minus the intruder’s speed is more than 18m/s; 

─ The encounter angle is greater than 45
o
, but it is less than 51.2

o
. 

2. Pattern 2 is close initial positions encounters, where the intersection of the follow-

ing conditions is true: 

─ The encounter angle is less than 20
o
; 

─ The subject UAV’s speed minus the intruder’s speed is less than 5m/s. 

4.3 Experiment 2: sensor value uncertainty 

Experiment 2 was conducted without making the perfect sensing ability assump-

tion. Here we simply add Gaussian noise to the sensing result of the other UAV’s 

position and velocity vector. The mean (µ) of the Gaussian noise is 0, and the stand-

ard deviation (σ) is 0.05*{real value}. The sensing rate is as TCAS, which is 1Hz. 

Experiment 2.1 

Again, we first used random search to find “obvious” mid-air collisions. We con-

ducted random search 5 times, with 250,000 sample points each time.  

In the first 4 trials, all the collision situations found can either be categorized as 

pattern 1 or pattern 2, except one. No collision was found in trial 5. The one exception 

is a left side crossing according to Fig. 1, where even though the subject UAV and the 

intruder’s speeds are very close (i.e. 85.84m/s and 83.04m/s), their encounter angle is 



larger (28.56
o
) than that in pattern 2. This exceptional encounter recurred as shown in 

Fig. 9 (a). 

According to SVO, this is an Overtaking encounter, where the speeds of the UAVs 

are very close. Due to the sensor noise, the intruder sometimes decided its speed was 

greater than the subject UAV’s and took avoidance manoeuvres while in fact it 

shouldn’t have. The result is that the intruder’s right turn avoidance manoeuvres can-

celled out some of the effect of the subject UAV’s and they collide sometime in the 

future. But if there were no sensor noise, the collision would not have happened as 

shown in Fig. 9 (b). 

(a) (b)

Fig. 9.  (a) Trajectory with sensor noise; (b) Trajectory without sensor noise 

Again we need to ask whether or not the situations found so far constitute all the 

possible situations that will result in a mid-air collision under sensor noise. We ex-

plored this in experiments 2.2 and 2.3. 

Experiment 2.2 

Experiment 2.2 tried to find subtler situations that will result in mid-air collisions 

other than those found in experiment 2.1 using random search. We conducted random 

search 5 times, with 250,000 sample points each time. Of all the sampled points, we 

found no mid-air collision. 

We then checked some of the nearest mid-air approaches and found another situa-

tion that may lead to mid-air collision – the intruder approaches the subject UAV 

from the right side with an encounter angle a little greater than 45
o
; and the intruder 

has a high speed while the subject UAV has a low speed. This is actually the same as 

those identified in pattern 1 except the intruder approaches from the right side. It fol-

lows that the random search should have found some collisions in this situation as it 

did in experiment 1.1 considering that we have searched such a huge number of sam-

ple points. One explanation for this could be that with the Gaussian noise added, more 

uncertainty was added and the set of possible paths through the simulation became far 

larger than before. 

Experiment 2.3 

Experiment 2.3 tried to find even subtler situations that will result in mid-air colli-

sions other than those found in experiment 2.1 and 2.2 using evolutionary search. To 

achieve this, we noted that GA has a strong tendency to converge and the existence of 

some good initial genomes determines whether it can find the “best” individuals in a 



finite number of generations. (See our earlier comment on this in experiment 1.3). We 

set the search to run for 50 generations (ten times fewer than before), each generation 

with 5000 individuals (ten times more than before). The number of total sample 

points is also the same as experiment 2.1 and 2.2. The fitness function is the same as 

that of experiment 1.3. 

We made 5 trials, of which all but the third trial found mid-air collisions. A typical 

collision is shown in Fig. 10 (a). This is a little like those identified in pattern 1, ex-

cept that the encounter angle is a little greater (51.7
o
 for this typical encounter). Due 

to sensor noise, sometimes the intruder decided to “Maintain” its velocity while in 

fact it should have made an “Avoid” manoeuvre.   

When we observed this encounter without sensor noise, we found the trajectory as 

shown in Fig. 10 (b). The intruder did avoid the subject UAV, but it could not get to 

its target due to the maximum turning rate constraint. So it kept circling around the 

target. This is undesirable and also forms a hazard, because it may cause the UAV to 

run out of fuel and finally crash. As can be seen from the figure, this happened in the 

“Restore” stage and it is actually not the responsibility of the collision avoidance sys-

tem but the autopilot (or other controllers). This problem can be solved by letting the 

UAV take a Dubins Curve [14] to its target. 

51.7deg 51.7deg

(a) (b)

Fig. 10.  A typical encounter in experiment 2.3, (a) with sensor noise; (b) without sensor noise 

4.4 Findings 

Through the experiments, we found the following: 

1. Whether with random search or evolutionary search, our multi-agent simulations 

have the ability to reveal safety issues of a SAA algorithm (SVO). Using the en-

counters generated by our “encounter generators”, SAA algorithms can be tested in 

different situations; 

2. Even though random search can reveal some relatively obvious safety issues, evo-

lutionary search has the ability to guide the simulations towards much subtler chal-

lenging situations for SVO to handle. With the combination of the two, the safety 

validation process has the potential to be accelerated; 

3. Some plausible safety issues of SVO have been revealed by our approach – it is 

dangerous to let low speed UAV avoid high speed UAV in some situations; the 45
o
 

encounter angle for crossing is a dangerous boundary value for SVO; the SVO al-

gorithm is sensitive to sensor noise on velocity. 



5 Conclusions and Future Work 

We have described a safety validation approach for SAA algorithms using multi-

agent simulation and evolutionary search. Through experiments we have shown that 

our approach can reveal faults that random simulation takes a long time to find, and 

thus that our approach may accelerate the safety validation process. In the process, we 

found some safety issues with the SVO algorithm.  

When building simulations, we treat SAA algorithms as black boxes. The infor-

mation on positions, velocities and shapes of UAVs is provided as input to the algo-

rithm and the next waypoint the host UAV should navigate to is returned as output. 

Therefore, this approach can be easily used to assess a variety of SAA algorithms as 

long as they follow that input and output protocol (or can be adapted to do so). 

The collision avoidance algorithm analysed in this paper is relatively simple, and 

thus the fitness function used in this paper is straightforward – only the nearest prox-

imity to the other UAV is considered. In the future, we will study more sophisticated 

algorithms (e.g. the ACAS X algorithm [5]) and devise risk measurements that ac-

commodate factors beyond simple proximity. We will then base our fitness function 

on these risk measurements to lead the simulation towards high risk situations. 

In the experiments, the GA was not well-tuned and sometimes it would lead to 

premature convergence to local maxima (or minima). We will explore ways to over-

come this in the future by adaptively controlling the crossover and mutation probabili-

ties (e.g. as discussed in [15]). 

According to section 2, this work partially addresses the challenge of efficiency 

and touches on challenges of fidelity and coverage. Our future work will tackle these 

further, the latter two in particular by creating more complex encounter generators 

that produce richer situations (including equipment failure and other degraded 

modes). Also, we will consider multi-body encounter problems and the use of 3D 

simulations. In this way we hope to contribute to the development of effective SAA 

algorithms, and to provide a cost-effective approach for validation of this important 

class of algorithm. 
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